Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(1): 1216-1229, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38222653

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease, affecting the elderly population worldwide. In PD, the misfolding of α-synuclein (α-syn) results in the formation of inclusions referred to as Lewy bodies (LB) in midbrain neurons of the substantia nigra and other specific brain localizations, which is associated with neurodegeneration. There are no approved strategies to reduce the formation of LB in the neurons of patients with PD. Our drug discovery program focuses on the synthesis of urea and thiourea compounds coupled with aminoindole moieties to abrogate α-syn aggregation and to slow down the progression of PD. We synthesized several urea and thiourea analogues with a central 1,4-phenyl diurea/thiourea linkage and evaluated their effectiveness in reducing α-syn aggregation with a special focus on the selective inhibition of oligomer formation among other proteins. We utilized biophysical methods such as thioflavin T (ThT) fluorescence assays, transmission electron microscopy (TEM), photoinduced cross-linking of unmodified proteins (PICUP), as well as M17D intracellular inclusion cell-based assays to evaluate the antiaggregation properties and cellular protection of our best compounds. Our results identified compound 1 as the best compound in reducing α-syn fibril formation via ThT assays. The antioligomer formation of compound 1 was subsequently superseded by compound 2. Both compounds selectively curtailed the oligomer formation of α-syn but not tau 4R isoforms (0N4R, 2N4R) or p-tau (isoform 1N4R). Compounds 1 and 2 failed to abrogate tau 0N3R fibril formation by ThT and atomic force microscopy. Compound 2 was best at reducing the formation of recombinant α-syn fibrils by TEM. In contrast to compound 2, compound 1 reduced the formation of α-syn inclusions in M17D neuroblastoma cells in a dose-dependent manner. Compound 1 may provide molecular scaffolds for the optimization of symmetric molecules for its α-syn antiaggregation activity with potential therapeutic applications and development of small molecules in PD.

2.
ACS Chem Neurosci ; 14(21): 3913-3927, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37818657

RESUMO

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder underlying dementia in the geriatric population. AD manifests by two pathological hallmarks: extracellular amyloid-ß (Aß) peptide-containing senile plaques and intraneuronal neurofibrillary tangles comprised of aggregated hyperphosphorylated tau protein (p-tau). However, more than half of AD cases also display the presence of aggregated α-synuclein (α-syn)-containing Lewy bodies. Conversely, Lewy bodies disorders have been reported to have concomitant Aß plaques and neurofibrillary tangles. Our drug discovery program focuses on the synthesis of multitarget-directed ligands to abrogate aberrant α-syn, tau (2N4R), and p-tau (1N4R) aggregation and to slow the progression of AD and related dementias. To this end, we synthesized 11 compounds with a triazine-linker and evaluated their effectiveness in reducing α-syn, tau isoform 2N4R, and p-tau isoform 1N4R aggregation. We utilized biophysical methods such as thioflavin T (ThT) fluorescence assays, transmission electron microscopy (TEM), photoinduced cross-linking of unmodified proteins (PICUP), and M17D intracellular inclusion cell-based assays to evaluate the antiaggregation properties and cellular protection of our best compounds. We also performed disaggregation assays with isolated Aß-plaques from human AD brains. Our results demonstrated that compound 10 was effective in reducing both oligomerization and fibril formation of α-syn and tau isoform 2N4R in a dose-dependent manner via ThT and PICUP assays. Compound 10 was also effective at reducing the formation of recombinant α-syn, tau 2N4R, and p-tau 1N4R fibrils by TEM. Compound 10 reduced the development of α-syn inclusions in M17D neuroblastoma cells and stopped the seeding of tau P301S using biosensor cells. Disaggregation experiments showed smaller Aß-plaques and less paired helical filaments with compound 10. Compound 10 may provide molecular scaffolds for further optimization and preclinical studies for neurodegenerative proteinopathies.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Idoso , Humanos , Proteínas tau/metabolismo , alfa-Sinucleína/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Isoformas de Proteínas
3.
J Org Chem ; 88(16): 11424-11433, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37399167

RESUMO

White-light emission from a single organic molecule, known as a single white-light emitter, is a rare phenomenon and desirable property for a class of materials with potential future applications in white lighting. Since N-aryl-naphthalimides (NANs) have been shown to follow excited state behavior and unique dual or panchromatic emission through a substituent pattern prescribed via a seesaw photophysical model, this study investigates the substituent effects on the fluorescence emission of structurally related N-aryl-phenanthridinones (NAPs) dyes. Following a similar placement prescription of an electron-releasing group (ERG) and electron-withdrawing group (EWG) at the phenanthridinone core and N-aryl moiety, we discovered from time-dependent density functional theory (TD-DFT) results that NAPs show a substitution pattern opposite to NANs in order to promote S2 and higher excited states. Interestingly, 2-methoxy-5-[4-nitro-3(trifluoromethyl)phenyl]phenanthridin-6(5H)-one 6e displayed a pronounced dual and panchromatic fluorescence dye depending on the solvent. For the six dyes included in the study, full spectral information in a variety of solvents, as well as fluorescence quantum yield and lifetime are reported. TD-DFT calculations support the predicted optical behavior via mixing of S2 and S6 excited states via anti-Kasha type of emission behavior.

4.
ACS Omega ; 8(22): 20102-20115, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37305264

RESUMO

Protein misfolding results in a plethora of known diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, transthyretin-related amyloidosis, type 2 diabetes, Lewy body dementia, and spongiform encephalopathy. To provide a diverse portfolio of therapeutic small molecules with the ability to reduce protein misfolding, we evaluated a set of 13 compounds: 4-(benzo[d]thiazol-2-yl)aniline (BTA) and its derivatives containing urea (1), thiourea (2), sulfonamide (3), triazole (4), and triazine (5) linker. In addition, we explored small modifications on a very potent antioligomer 5-nitro-1,2-benzothiazol-3-amine (5-NBA) (compounds 6-13). This study aims to define the activity of BTA and its derivatives on a variety of prone-to-aggregate proteins such as transthyretin (TTR81-127, TTR101-125), α-synuclein (α-syn), and tau isoform 2N4R (tau 2N4R) through various biophysical methods. Thioflavin T (ThT) fluorescence assay was used to monitor fibril formation of the previously mentioned proteins after treatment with BTA and its derivatives. Antifibrillary activity was confirmed using transmission electron microscopy (TEM). Photoreactive cross-linking assay (PICUP) was utilized to detect antioligomer activity and lead to the identification of 5-NBA (at low micromolar concentration) and compound 13 (at high concentration) as the most promising in reducing oligomerization. 5-NBA and not BTA inhibited the inclusion formation based on the cell-based assay using M17D neuroblastoma cells that express inclusion-prone αS-3K::YFP. 5-NBA abrogated the fibril, oligomer, and inclusion formation in a dose-dependent manner. 5-NBA derivatives could be the key to mitigate protein aggregation. In the future, the results made from this study will provide an initial platform to generate more potent inhibitors of α-syn and tau 2N4R oligomer and fibril formation.

5.
Results Chem ; 52023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37346091

RESUMO

Alzheimer's disease (AD) is a multifactorial, chronic neurodegenerative disease characterized by the presence of extracellular ß-amyloid (Aß) plaques, intraneuronal neurofibrillary tangles (NFTs), activated microglial cells, and an inflammatory state (involving reactive oxygen species production) in the brain. NFTs are comprised of misfolded and hyperphosphorylated forms of the microtubule-binding protein tau. Interestingly, the trimeric form of the 2N4R splice isoform of tau has been found to be more toxic than the trimeric 1N4R isoform in neuron precursor cells. Few drug discovery programs have focused on specific tau isoforms. The present drug discovery project is centered on the anti-aggregation effect of a series of seventeen 4- or 5-aminoindole carboxamides on the 2N4R isoform of tau. The selection of the best compounds was performed using α-synuclein (α-syn). The anti-oligomer and -fibril activities of newly synthesized aminoindole carboxamide derivatives were evaluated with biophysical methods, such as thioflavin T fluorescence assays, photo-induced cross-linking of unmodified proteins, and transmission electron microscopy. To evaluate the reduction of inclusions and cytoprotective effects, M17D neuroblastoma cells expressing inclusion-forming α-syn were treated with the best amide representatives. The 4-aminoindole carboxamide derivatives exhibited a better anti-fibrillar activity compared to their 5-aminoindole counterparts. The amide derivatives 2, 8, and 17 exerted anti-oligomer and anti-fibril activities on α-syn and the 2N4R isoform of tau. At a concentration of 40 µM, compound 8 reduced inclusion formation in M17D neuroblastoma cells expressing inclusion-prone αSynuclein3K::YFP. Our results demonstrate the potential of 4-aminoindole carboxamide derivatives with regard to inhibiting the oligomer formation of α-syn and tau (2N4R isoform) for further optimization prior to pre-clinical studies.

6.
J Mol Struct ; 12672022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36310922

RESUMO

In contrast to Aß plaques, the spatiotemporal distribution of neurofibrillary tangles of hyperphosphorylated tau (p-tau) predicts cognitive impairment in Alzheimer's disease (AD), underscoring the key pathological role of p-tau and the utmost need to develop AD therapeutics centering upon the control of p-tau aggregation and cytotoxicity. Our drug discovery program is focused on compounds that prevent the aggregation and cytotoxicity of p-tau moieties of the tau isoform 1N4R due to its prevalence (1 N) and long-distance trans-synaptic propagation (4R). We prepared and tested twenty-four newly synthesized small molecules representing the urea (1, 2, 3), sulfonylurea (4), and sulfonamide (5-24) series and evaluated their anti-aggregation effects with biophysical methods (thioflavin T and S fluorescence assays, transmission electron microscopy) and intracellular inclusion cell-based assays. Pre-evaluation was performed on alpha-synuclein (α-syn) to identify molecules to be challenged with p-tau. The sulfonamide derivatives 18 and 20 exhibited an anti-fribrillization activity on α-syn and p-tau. Sulfonamide compounds 18 and 20 reduced inclusion formation in M17D neuroblastoma cells that express inclusion-prone αSynuclein3K::YFP. This project advances new concepts in targeting prone-to-aggregate proteins such as α-syn and p-tau, and provides a molecular scaffold for further optimization and pre-clinical studies focused on AD drug development.

7.
Eur J Med Chem ; 157: 962-977, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30165344

RESUMO

The peptidic ß-lactone proteasome inhibitors (PIs) cystargolides A and B were used to conduct structure-activity relationship (SAR) studies in order to assess their anticancer potential. A total of 24 different analogs were designed, synthesized and evaluated for proteasome inhibition, for cytotoxicity towards several cancer cell lines, and for their ability to enter intact cells. X-ray crystallographic analysis and subunit selectivity was used to determine the specific subunit binding associated with the structural modification of the ß-lactone (P1), peptidic core, (Px and Py), and end-cap (Pz) of our scaffold. The cystargolide derivative 5k, structurally unique at both Py and P1, exhibited the most promising inhibitory activity for the ß5 subunit of human proteasomes (IC50 = 3.1 nM) and significant cytotoxicity towards MCF-7 (IC50 = 416 nM), MDA-MB-231 (IC50 = 74 nM) and RPMI 8226 (IC50 = 41 nM) cancer cell lines. Cellular infiltration assays revealed that minor structural modifications have significant effects on the ability of our PIs to inhibit intracellular proteasomes, and we identified 5k as a promising candidate for continued therapeutic studies. Our novel drug lead 5k is a more potent proteasome inhibitor than carfilzomib with mid-to-low nanomolar IC50 measurements and it is cytotoxic against multiple cancer cell lines at levels approaching those of carfilzomib.


Assuntos
Antineoplásicos/farmacologia , Dipeptídeos/farmacologia , Desenho de Fármacos , Lactonas/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/síntese química , Inibidores de Proteassoma/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Dipeptídeos/química , Relação Dose-Resposta a Droga , Humanos , Lactonas/síntese química , Lactonas/química , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteassoma/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...